GRAPHING SINE & COSINE

ALGEBRA II

UNIT 2

DAY I: REVIEW OF SINE & COSINE

- What is sine?
 - SOH = $\frac{Opposite}{Hypotenuse}$
- What is cosine?
 - **CAH** = $\frac{Adjacent}{Hypotenuse}$
- What is domain?
 - Of cosine? \rightarrow (- ∞ , ∞)
 - Of sine? \rightarrow (- ∞ , ∞)
- What is range?
 - Of cosine? \rightarrow [-1, 1]
 - Of sine? \rightarrow [-1, 1]

 \rightarrow Which line is cosine?

\rightarrow Which line is sine?

DAY I: TERMINOLOGY

- By the end of the unit we will be able to solve equations such as:
 - $y = -3\cos(\frac{1}{2}(x 4\pi)) + 5$
- y = asin(bx-h) + k
 - a = amplitude (vertical stretch/shrink)
 - b = horizontal stretch/shrink
 - h = horizontal shift
 - k = vertical shift (midline)

- **Amplitude**: the distance from the midline to the highest or lowest point of the graph
- Horizontal Stretch: making the period larger.
- Horizontal Shrink: making the period smaller.
- Horizontal Shift: moving the starting point of the function right or left.
- **Vertical Shift**: moving the midline of the function up or down.
- **Midline**: horizontal axis that is used as the reference line about which the graph of a trigonometric function oscillates.
- **Period**: one full cycle of the trig function.
- **Increment**: how far apart each of the 5 main points are.

DAY I: GRAPHING BY HAND

- Five main focus points
 - 0, 90°, 180°, 270°, and 360°
- Reference the unit circle

DAY I: GRAPHING BY HAND

- SINE PARENT GRAPH:
- Five focus points:
 - $0 \rightarrow 0$
 - 90° → I
 - $180^{\circ} \rightarrow 0$
 - 270° → -I
 - $360^{\circ} \rightarrow 0$
- Period = 2π
- Amplitude = I
- Midline = x-axis or x = 0

DAY I: GRAPHING BY HAND

- COSINE PARENT GRAPH:
- Five focus points:
 - $0 \rightarrow 1$
 - $90^{\circ} \rightarrow 0$
 - I80° → -I
 - 270° → 0
 - $360^{\circ} \rightarrow I$
- Period = 2π
- Amplitude = I
- Midline = x-axis or x = 0

DAY 2: SPAGHETTI LAB

- Groups of 2
 - Partner I: Sine
 - Partner 2: Cosine
- Each partner needs:
 - Unit Circle
 - Rectangle Graph
 - 8 Pieces of Spaghetti
 - Glue

DAY 2: SPAGHETTI LAB

• Sine Partner:

- On your circular graph, draw a perpendicular line segment from each angle measurement to the **x-axis**.
- Lay spaghetti down and carefully break at the same length of each line (every 15°) all the way around the unit circle (360°).
- Glue each spaghetti piece to the corresponding angle on the rectangle graph.

DAY 2: SPAGHETTI LAB

Cosine Partner:

- On your circular graph, draw a perpendicular line segment from each angle measurement to the **y-axis**.
- Lay spaghetti down and carefully break at the same length of each line (every 15°) all the way around the unit circle (360°).
- Glue each spaghetti piece to the corresponding angle on the rectangle graph.

DAY 3: AMPLITUDE & PERIODS

AMPLITUDE

- Definition: the distance from the midline to the highest or lowest point of the graph
- y = asin(bx-h) + k
 - a = amplitude (vertical stretch/shrink)
- To find the amplitude, take the absolute value of a.
 - |a|

• PERIOD

- Definition: one full cycle of the trig function.
- y = asin(bx-h) + k
 - b = horizontal shrink/stretch
- To find the period, divide 2π by b.
 - $\frac{2\pi}{b}$

INCREMENT

- Definition: how far apart each of the 5 main points are.
- To find the increment, divide the period by 4.

Period

DAY 3: AMPLITUDE & PERIODS

• Examples:

- y = 8sin(x)
 y = ¹/₂sin(x)
 y = sin(¹/₂x)

•
$$y = 4\cos(2x)$$

DAY 4: QUIZ

• Quizziz.com

- Join a game. Teacher info in notes.
- Students will play my quiz first.
- Must have piece of paper with scratch work to turn in.
- The quiz is not timed but will be graded.
 - Will get points for score as well as scratch work.

- When finished with my quiz, play two other Graphing Sine & Cosine quizzes.
- After that, if time is left, you may play whatever quiz you would like.

DAY 5: VERTICAL SHIFTS

• Definition:

- moving the midline of the function up or down.
- <u>Midline:</u> horizontal axis that is used as the reference line about which the graph of a trigonometric function oscillates.
- Range?
 - Since we are moving the midline, range is affected.
 - Take the original ranged with the amplitude included and either add or subtract the k value from both the lowest point and the highest point.

- y = asin(bx-h) + k
 - k = vertical shift (midline)
- If y = asin(bx-h) + k
 - Shift parent graph up k units.
- If y = asin(bx-h) k
 - Shift parent graph down k units.

DAY 5: VERTICAL SHIFTS

- Examples:
 - y = cos(x) 3
 - y = sin(x) + 7
 - $y = \frac{1}{2}sin(x) + 2$
 - y = sin(8x) 5
 - $y = 2\cos(\frac{1}{2}x) + 4$

DAY 6: HORIZONTAL SHIFTS

- Definition: moving the starting point of the function right or left.
- Domain?
 - Since the domain is always (-∞, ∞), a horizontal shift does not affect the domain.

- y = asin(bx-h) + k
 - h = horizontal shift
- If y = asin(bx-h) + k
 - Shift the parent graph to the **right** h units.
- If y = asin(bx+h) + k
 - Shift the parent graph to the **left** h units.

DAY 6: HORIZONTAL SHIFTS

- Examples:
 - $y = cos(x \pi)$
 - $y = sin(x + 2\pi)$
 - $y = \frac{1}{2}sin(x \pi) + 2$ • $y = sin(4x - \frac{\pi}{2}) - 1$ • $y = 2cos(\frac{1}{2}x + \pi) + 3$

DAY 7: PYTHAGOREAN IDENTITY

- What is it?
 - $sin^2(\theta) + cos^2(\theta) = 1$
- Proof:
- $x^2 + y^2 = r^2 \rightarrow$ equation of a circle
- $x^2 + y^2 = I^2 \rightarrow$ radius of unit circle is I
- $x^2 + y^2 = I \rightarrow calculation$
- $cos^{2}(\theta) + sin^{2}(\theta) = 1 \rightarrow substitution$
- $sin^{2}(\theta) + cos^{2}(\theta) = 1 \rightarrow$ commutative property of addition

DAY 7: PYTHAGOREAN IDENTITY

We can also use the Pythagorean Identity to derive the other identities.