GRAPHING SINE \& COSINE

ALGEBRA II

UNIT 2

DAY I: REVIEW OF SINE \& COSINE

- What is sine?
- $\mathrm{SOH}=\frac{\text { opposite }}{\text { Hypotenuse }}$
- What is cosine?
- $\mathrm{CAH}=\frac{\text { Adjacent }}{\text { Hypotenuse }}$
- What is domain?
- Of cosine? $\rightarrow(-\infty, \infty)$
- Of sine? $\rightarrow(-\infty, \infty)$
- What is range?

- Of cosine? $\rightarrow[-\mathrm{I}, \mathrm{I}]$
\rightarrow Which line is cosine? $\quad \rightarrow$ Which line is sine?
- Of sine? $\rightarrow[-\mathrm{I}, \mathrm{I}]$

DAY I:TERMINOLOGY

- By the end of the unit we will be able to solve equations such as:
- $y=-3 \cos \left(\frac{1}{2}(x-4 \pi)\right)+5$
- $y=\operatorname{asin}(b x-h)+k$
- $\mathrm{a}=$ amplitude (vertical stretch/shrink)
- $b=$ horizontal stretch/shrink
- $\mathrm{h}=$ horizontal shift
- $\mathrm{k}=$ vertical shift (midline)
- Amplitude: the distance from the midline to the highest or lowest point of the graph
- Horizontal Stretch: making the period larger.
- Horizontal Shrink: making the period smaller.
- Horizontal Shift: moving the starting point of the function right or left.
- Vertical Shift: moving the midline of the function up or down.
- Midline: horizontal axis that is used as the reference line about which the graph of a trigonometric function oscillates.
- Period: one full cycle of the trig function.
- Increment: how far apart each of the 5 main points are.

DAY I: GRAPHING BY HAND

- Five main focus points
- $0,90^{\circ}, 180^{\circ}, 270^{\circ}$, and 360°
- Reference the unit circle

DAY I: GRAPHING BY HAND

- SINE PARENT GRAPH:

- Five focus points:
- $0 \rightarrow 0$
- $90^{\circ} \rightarrow$ I
- $180^{\circ} \rightarrow 0$
- $270^{\circ} \rightarrow-1$
- $360^{\circ} \rightarrow 0$
- Period $=2 \pi$
- Amplitude = I
- Midline $=x$-axis or $x=0$

DAY I: GRAPHING BY HAND

- COSINE PARENT GRAPH:
- Five focus points:
- $0 \rightarrow$ I
- $90^{\circ} \rightarrow 0$
- $180^{\circ} \rightarrow-1$
- $270^{\circ} \rightarrow 0$
- $360^{\circ} \rightarrow$ I
- Period $=2 \pi$
- Amplitude $=1$
- Midline $=x$-axis or $x=0$

DAY 2: SPAGHETTI LAB

- Groups of 2
- Partner I:Sine
- Partner 2: Cosine
- Each partner needs:
- Unit Circle
- Rectangle Graph
- 8 Pieces of Spaghetti
- Glue

DAY 2: SPAGHETTI LAB

- Sine Partner:

- On your circular graph, draw a perpendicular line segment from each angle measurement to the \mathbf{x}-axis.
- Lay spaghetti down and carefully break at the same length of each line (every 15°) all the way around the unit circle (360°).
- Glue each spaghetti piece to the corresponding angle on the rectangle graph.

DAY 2: SPAGHETTI LAB

- Cosine Partner:

- On your circular graph, draw a perpendicular line segment from each angle measurement to the \mathbf{y}-axis.
- Lay spaghetti down and carefully break at the same length of each line (every 15°) all the way around the unit circle $\left(360^{\circ}\right)$.
- Glue each spaghetti piece to the corresponding angle on the rectangle graph.

DAY 3:AMPLITUDE \& PERIODS

- AMPLITUDE

- Definition: the distance from the midline to the highest or lowest point of the graph
- $y=a \sin (b x-h)+k$
- $a=$ amplitude (vertical stretch/shrink)
- To find the amplitude, take the absolute value of a.
- $|a|$

- PERIOD

- Definition: one full cycle of the trig function.
- $y=a \sin (b x-h)+k$
- $b=$ horizontal shrink/stretch
- To find the period, divide 2π by b.
- $\frac{2 \pi}{b}$
- INCREMENT
- Definition: how far apart each of the 5 main points are.
- To find the increment, divide the period by 4.
- $\frac{\text { Period }}{4}$

DAY 3:AMPLITUDE \& PERIODS

- Examples:
- $y=3 \cos (x)$
- $y=8 \sin (x)$
- $y=\frac{1}{2} \sin (x)$
- $y=\sin \left(\frac{1}{2} x\right)$
- $y=4 \cos (2 x)$

DAY 4: QUIZ

- Quizziz.com
- Join a game. Teacher info in notes.
- Students will play my quiz first.
- Must have piece of paper with scratch work to turn in.
- The quiz is not timed but will be graded.
- Will get points for score as well as scratch work.
- When finished with my quiz, play two other Graphing Sine \& Cosine quizzes.
- After that, if time is left, you may play whatever quiz you would like.

DAY 5:VERTICAL SHIFTS

- Definition:

- moving the midline of the function up or down.
- Midline: horizontal axis that is used as the reference line about which the graph of a trigonometric function oscillates.
- Range?
- Since we are moving the midline, range is affected.
- Take the original ranged with the amplitude included and either add or subtract the k value from both the lowest point and the highest point.
- $y=a \sin (b x-h)+k$
- $\mathrm{k}=$ vertical shift (midline)
- If $y=a \sin (b x-h)+k$
- Shift parent graph up k units.
- If $y=a \sin (b x-h)-k$
- Shift parent graph down k units.

DAY 5:VERTICAL SHIFTS

- Examples:
- $y=\cos (x)-3$
- $y=\sin (x)+7$
- $y=\frac{1}{2} \sin (x)+2$
- $y=\sin (8 x)-5$
- $y=2 \cos \left(\frac{1}{2} x\right)+4$

DAY 6: HORIZONTAL SHIFTS

- Definition: moving the starting point of the function right or left.
- Domain?
- Since the domain is always $(-\infty, \infty)$, a horizontal shift does not affect the domain.
- $y=a \sin (b x-h)+k$
- $h=$ horizontal shift
- If $y=a \sin (b x-h)+k$
- Shift the parent graph to the right h units.
- If $y=a \sin (b x+h)+k$
- Shift the parent graph to the left h units.

DAY 6: HORIZONTAL SHIFTS

- Examples:
- $y=\cos (x-\pi)$
- $y=\sin (x+2 \pi)$
- $y=\frac{1}{2} \sin (x-\pi)+2$
- $y=\sin \left(4 x-\frac{\pi}{2}\right)-1$
- $y=2 \cos \left(\frac{1}{2} x+\pi\right)+3$

DAY 7:PYTHAGOREAN IDENTITY

- What is it?

$$
\text { - } \sin ^{2}(\theta)+\cos ^{2}(\theta)=1
$$

- Proof:
- $x^{2}+y^{2}=r^{2} \rightarrow$ equation of a circle
- $x^{2}+y^{2}=I^{2} \rightarrow$ radius of unit circle is I
- $x^{2}+y^{2}=1 \rightarrow$ calculation
- $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1 \rightarrow$ substitution

- $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1 \rightarrow$ commutative property of addition

DAY 7:PYTHAGOREAN IDENTITY

$\frac{\sin ^{2} \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta}$

$1+\cot ^{2} \theta=\csc ^{2} \theta$
(You can also remember that the "co" guys go together!)

$$
\tan ^{2} \theta+1=\sec ^{2} \theta
$$

We can also use the Pythagorean Identity to derive the other identities.

